
溫馨提示:需求數(shù)量不同,價格不同。請聯(lián)系我們,確認當前新的報價!
Xenos軟件套件是模擬X射線、電子及其相互作用的資源。組件作為耦合或獨立應(yīng)用程序用于電場和磁場計算、電子束設(shè)計、輻射傳輸?shù)拿商乜_建模和熱分析。
Xenos(X射線/電子數(shù)值優(yōu)化套件)使一組2D/3D有限元程序,可模擬您想了解的有關(guān)X射線和電子的全部信息。組件程序計算電場、磁場、帶電粒子動力學(xué)、材料中的電子-光子-正電子傳輸和熱傳輸。Professional版在64位Windows機器上具有無限的內(nèi)存訪問和的并行處理功能。
下圖顯示了程序如何作為一個集成系統(tǒng)進行通信。應(yīng)用程序幾何是在Geometer的交互式圖形環(huán)境中定義的。MetaMesh使用這些信息為解決方案程序創(chuàng)建六面體元素的保形網(wǎng)格。相同或不同的網(wǎng)格可用于定義1)用于電場計算(HiPhi)的電極和電介質(zhì),2)用于磁場計算(Magnum)的線圈、鐵和永磁體,3)用于蒙特卡羅輻射傳輸?shù)脑睾突衔铮℅amBet)和4)用于熱傳輸?shù)墓腆w材料(HeatWave)。從這一點來看,有幾種選擇:
GamBet可以從HiPhi和Magnum導(dǎo)入字段信息。在這種情況下,電子和正電子的歷史受到洛倫茲力以及物質(zhì)相互作用的影響。
GamBet可以將信息傳輸?shù)絆mniTrak以跟蹤目標(即正電子束)中產(chǎn)生的粒子的軌道
來自HiPhi和Magnum的現(xiàn)場信息可以傳輸?shù)絆mniTrak以設(shè)計電子槍和傳輸系統(tǒng)。然后可以將生成的光束分布發(fā)送到GamBet以研究目標相互作用
GamBet記錄了沉積功率密度的空間發(fā)布。HeatWave將這些信息用于靜態(tài)和動態(tài)熱模擬
GenDist對來自O(shè)mniTrak和GamBet的粒子分布進行統(tǒng)計分析
Xenos包含一組用于2D計算的并行程序。2D和3D程序之間的交互有多種途徑。
可以使用Xenos執(zhí)行的一些計算:
熱離子陰極的加熱器功率
具有多個電子或X射線束的臨床劑量分布
高壓穿通中的峰值電場
光束診斷校準
電子束焊機的屏蔽要求和溫度曲線
由光子散射設(shè)置的X射線成像系統(tǒng)的分辨率限制
用于光束線的彎曲和聚焦磁鐵的設(shè)計
光學(xué)系統(tǒng)中的正電子產(chǎn)生和捕獲
螺線管或四極透鏡中的像差
來自周圍鐵結(jié)構(gòu)的光束擾動
高強度電子槍中的空間電荷限制電流
通過脈沖束加熱X射線目標
用于高功率微波管的周期性永磁陣列
板束輻照器的3D設(shè)計
屏蔽MRI磁體
具有3D邊緣場的磁或電偏轉(zhuǎn)器中的數(shù)值準確電子軌道
【英文介紹】
The Xenos software suite is the ultimate resource to model X-rays, electrons and their interactions. Components function as coupled or stand-alone applications for electric and magnetic field calculations, electron beam design, Monte Carlo modeling of radiation transport and thermal analysis.
Xenos (X-ray/electron numerical optimization suite) is a set of advanced 2D/3D finite-element programs that simulates everything you'll want to know about X-rays and electrons. Component programs calculate electric fields, magnetic fields, charged-particle dynamics, electron-photon-positron transport in materials and thermal transport. The Professional version features unlimited memory access and efficient parallel processing on 64-bit Windows machines.
The application geometry is defined in the interactive graphical environment of Geometer. MetaMesh uses the information to create conformal meshes of hexahedron elements for the solution programs. The same or different meshes may be used to define 1) electrodes and dielectrics for electrical field calculations (HiPhi), 2) coils, iron and permanent magnets for magnetic field calculations (Magnum), 3) elements and compounds for Monte Carlo radiation transport (GamBet) and 4) solid materials for thermal transport (HeatWave). From this point, there are several options:
GamBet can import field information from HiPhi and Magnum. In this case, electron and positron histories are influenced by Lorentz forces as well as material interactions
GamBet can transfer information to OmniTrak to trace orbits of particles generated in a target (i.e., a positron beam)
Field information from HiPhi and Magnum can be transferred to OmniTrak to design electron guns and transport systems. The resulting beam distributions can then be sent to GamBet to study target interactions
GamBet records the spatial distribution of deposited power density. The information is used by HeatWave for static and dynamic thermal simulations
GenDist performs statistical analysis of particle distributions from OmniTrak and Gambet
Xenos includes a parallel set of programs for 2D calculations. There are several pathways for interactions between the 2D and 3D programs.
Some calculations you can perform with Xenos
Heater power for a thermionic cathode.
Clinical dose distributions with multiple electron or X-ray beams.
Peak electric field in a high-voltage feethrough.
Calibration of beam diagnostics.
Shielding requirements and temperature profiles for an electron-beam welder.
Resolution limits in an X-ray imaging system set by photon scattering.
Design of bending and focusing magnets for a beam line.
Positron production and capture in an optical system.
Aberrations in solenoid or quadrupole lenses.
Beam perturbations from surrounding iron structures.
Space-charge-limited current in high-perveance electron guns.
Heating of an X-ray target by a pulsed beam.
Periodic permanent-magnet arrays for high-power microwave tubes.
3D design of sheet-beam irradiators.
Shielding of MRI magnets.
Numerically-exact electron orbits in magnetic or electric deflectors with 3D edge fields.